Rapid genetic analysis of Helicobacter pylori gastric mucosal colonization in suckling mice.
نویسندگان
چکیده
Previously described animal models for Helicobacter pylori infection have been limited by cumbersome host requirements (e.g., germ-free conditions or unusual species) or are applicable to only special subsets of H. pylori strains (e.g., fresh clinical isolates or animal-adapted derivatives). Here, we report that 5- to 6-day-old outbred CD-1 (ICR) suckling mice support 24-h colonization of all H. pylori strains tested (SS1, 26695 SmR-1, 43504 SmR-1, and G27 SmR-1), including lab-passaged strains that cannot be adapted for colonization of adult animals. Total colony-forming units (cfu) recovered from infection with lab-passaged strains did not differ from those with mouse-adapted SS1. We also tested this model's ability to detect colonization defects in strains carrying mutations in known virulence genes by coinfecting with wild-type H. pylori and measuring differential recovery. This competition assay identified colonization defects in several classes of known attenuated mutants, including those defective in acid resistance (ureA), metabolism (frdA), motility (motB), and chemotaxis (cheY). A mutant defective in copA (copper transporting P-type ATPase) is nonattenuated in adult and infant mice. Possibly because of the limited duration of infection, our model did not identify defects in vacuolating cytotoxin (vacA) or gamma-glutamyltranspeptidase (ggt) as attenuating, in contrast to results from other animal models. We also identified a new virulence gene (HP0507) encoding a conserved hypothetical protein, which is important for colonization in our model. The suckling mouse model offers a rapid method to identify colonization defects in any H. pylori strain and may have utility as a new tool for studying immunity to primary infection.
منابع مشابه
Psychological stress enhances the colonization of the stomach by Helicobacter pylori in the BALB/c mouse.
Helicobacter pylori infection is a risk factor for development of peptic ulcers, and psychological stress (PS) may have a role in the pathogenesis of this condition. However, no interaction between PS and H. pylori infection (HI) has been established in the development of peptic ulcer, because colonization by H. pylori is the first step in the infection of the gastric mucosa, we examined H. pyl...
متن کاملHelicobacter Pylori Induced Gastric Inflammation, Ulcer, and Cancer: A Pathogenesis Perspective
Helicobacter pylori infection induces gastric inflammation, ulcer, and cancer. H. pylori infection is coordinated in a cascade manner that helps it to colonize in the host. Colonization of bacterium starts by adapting itself to the harsh acidic environment in the stomach. H. pylori has the necessary machinery to neutralise the pH of its surroundings. It also has the ability to sense the pH of i...
متن کاملOral immunization with recombinant Lactobacillus acidophilus expressing the adhesin Hp0410 of Helicobacter pylori induces mucosal and systemic immune responses.
Helicobacter pylori infection is relatively common worldwide and is closely related to gastric mucosa-associated lymphoid tissue (MALT) lymphoma, chronic gastritis, and stomach ulcers. Therefore, a safe and effective method for preventing H. pylori infection is urgently needed. Given that developing an effective vaccine against H. pylori is one of the best alternatives, H. pylori adhesin Hp0410...
متن کاملAssociation between Helicobacter pylori cagA, babA2 Virulence Factors and Gastric Mucosal Interleukin-33 mRNA Expression and Clinical Outcomes in Dyspeptic Patients
Helicobacter pylori (H. pylori) infection has been reported in more than half of the world human population. It is associated with gastric inflammation and noticeable infiltration of the immune cells to the stomach mucosa by several cytokines secretion. IL-1&beta, IL-18 have been shown to contribute to H. pylori induced gastritis, but the details of inflammation and association of virulence fac...
متن کاملImmunization with Heat Shock Protein A and γ-Glutamyl Transpeptidase Induces Reduction on the Helicobacter pylori Colonization in Mice
The human gastric pathogen Helicobacter pylori (H. pylori) is a successful colonizer of the stomach. H. pylori infection strongly correlates with the development and progression of chronic gastritis, peptic ulcer disease, and gastric malignances. Vaccination is a promising strategy for preventing H. pylori infection. In this study, we evaluated the candidate antigens heat shock protein A (HspA)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 12 شماره
صفحات -
تاریخ انتشار 2002